\(\int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx\) [298]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 59, antiderivative size = 94 \[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=\frac {\sqrt {b+\sqrt {b^2-4 a c}} E\left (\arcsin \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{\sqrt {2} \sqrt {c}} \]

[Out]

1/2*EllipticE(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2),((b+(-4*a*c+b^2)^(1/2))/(b-(-4*a*c+b^2)^(1/2)))^(
1/2))*(b+(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2)/c^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {435} \[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=\frac {\sqrt {\sqrt {b^2-4 a c}+b} E\left (\arcsin \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{\sqrt {2} \sqrt {c}} \]

[In]

Int[Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]/Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])],x]

[Out]

(Sqrt[b + Sqrt[b^2 - 4*a*c]]*EllipticE[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]], (b + Sqrt[b^2
- 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(Sqrt[2]*Sqrt[c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {b+\sqrt {b^2-4 a c}} E\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{\sqrt {2} \sqrt {c}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.27 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=\frac {\sqrt {b+\sqrt {b^2-4 a c}} E\left (\arcsin \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )|-\frac {b+\sqrt {b^2-4 a c}}{-b+\sqrt {b^2-4 a c}}\right )}{\sqrt {2} \sqrt {c}} \]

[In]

Integrate[Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]/Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])],x]

[Out]

(Sqrt[b + Sqrt[b^2 - 4*a*c]]*EllipticE[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]], -((b + Sqrt[b^
2 - 4*a*c])/(-b + Sqrt[b^2 - 4*a*c]))])/(Sqrt[2]*Sqrt[c])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1387\) vs. \(2(76)=152\).

Time = 2.72 (sec) , antiderivative size = 1388, normalized size of antiderivative = 14.77

method result size
elliptic \(\text {Expression too large to display}\) \(1388\)

[In]

int((1-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*((2*c*x^2+(-4*a*c+b^2)^(1/2)-b)/(-b+(-4*a*c+b^2)^(1/2)))^(1/2)/((-2*c*x^2+(-4*a*c+b^2)^(1/2)+b)/(b+(-4*a*c
+b^2)^(1/2)))^(1/2)*(-b+(-4*a*c+b^2)^(1/2))*(-(2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*(-2*c*x^2+(-4*a*c+b^2)^(1/2)+b)/a
/c)^(1/2)/(2*c*x^2+(-4*a*c+b^2)^(1/2)-b)*(1/2/(-2*((-4*a*c+b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2+4*a*b*c)/(b+(-4*a
*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4+2*((-4*a*c+b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2+4*a*b*c)/(b+(-
4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4-2*((-4*a*c+b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2-4*a*b*c
)/(b+(-4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(1-2*c*x^2/(b+(-4*a*c+b^2)^(1/2))-2*c*x^2/(b-(-4
*a*c+b^2)^(1/2))+4*c^2/(b-(-4*a*c+b^2)^(1/2))/(b+(-4*a*c+b^2)^(1/2))*x^4)^(1/2)*EllipticF(1/2*x*(-2*((-4*a*c+b
^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2+4*a*b*c)/(b+(-4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/4*(-16-2*(
-2*c/(b+(-4*a*c+b^2)^(1/2))-2*c/(b-(-4*a*c+b^2)^(1/2)))*((-4*a*c+b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2-4*a*b*c)/(-
b+(-4*a*c+b^2)^(1/2))/a/c^2*(b-(-4*a*c+b^2)^(1/2)))^(1/2))-2*c/(-b+(-4*a*c+b^2)^(1/2))/(-2*((-4*a*c+b^2)^(3/2)
-(-4*a*c+b^2)^(1/2)*b^2+4*a*b*c)/(b+(-4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4+2*((-4*a*c+b^2)^(3
/2)-(-4*a*c+b^2)^(1/2)*b^2+4*a*b*c)/(b+(-4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4-2*((-4*a*c+
b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2-4*a*b*c)/(b+(-4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(1-2*c*
x^2/(b+(-4*a*c+b^2)^(1/2))-2*c*x^2/(b-(-4*a*c+b^2)^(1/2))+4*c^2/(b-(-4*a*c+b^2)^(1/2))/(b+(-4*a*c+b^2)^(1/2))*
x^4)^(1/2)/(-2*c/(b+(-4*a*c+b^2)^(1/2))-2*c/(b-(-4*a*c+b^2)^(1/2))-(-4*a*c+b^2)^(1/2)/a)*(EllipticF(1/2*x*(-2*
((-4*a*c+b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2+4*a*b*c)/(b+(-4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/
4*(-16-2*(-2*c/(b+(-4*a*c+b^2)^(1/2))-2*c/(b-(-4*a*c+b^2)^(1/2)))*((-4*a*c+b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2-4
*a*b*c)/(-b+(-4*a*c+b^2)^(1/2))/a/c^2*(b-(-4*a*c+b^2)^(1/2)))^(1/2))-EllipticE(1/2*x*(-2*((-4*a*c+b^2)^(3/2)-(
-4*a*c+b^2)^(1/2)*b^2+4*a*b*c)/(b+(-4*a*c+b^2)^(1/2))/(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/4*(-16-2*(-2*c/(b+(-4
*a*c+b^2)^(1/2))-2*c/(b-(-4*a*c+b^2)^(1/2)))*((-4*a*c+b^2)^(3/2)-(-4*a*c+b^2)^(1/2)*b^2-4*a*b*c)/(-b+(-4*a*c+b
^2)^(1/2))/a/c^2*(b-(-4*a*c+b^2)^(1/2)))^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 410 vs. \(2 (76) = 152\).

Time = 0.10 (sec) , antiderivative size = 410, normalized size of antiderivative = 4.36 \[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=-\frac {\sqrt {\frac {1}{2}} {\left (b^{2} x + \sqrt {b^{2} - 4 \, a c} b x + {\left (b c x + \sqrt {b^{2} - 4 \, a c} c x\right )} \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}}\right )} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b}{c}} \sqrt {\frac {c}{a}} E(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b}{c}}}{x}\right )\,|\,-\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b^{2} + 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left (\sqrt {b^{2} - 4 \, a c} b x + {\left (b^{2} - 2 \, b c\right )} x + {\left (\sqrt {b^{2} - 4 \, a c} c x + {\left (b c + 2 \, c^{2}\right )} x\right )} \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}}\right )} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b}{c}} \sqrt {\frac {c}{a}} F(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b}{c}}}{x}\right )\,|\,-\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b^{2} + 2 \, a c}{2 \, a c}) + {\left (b c + \sqrt {b^{2} - 4 \, a c} c\right )} \sqrt {-\frac {b x^{2} + \sqrt {b^{2} - 4 \, a c} x^{2} - 2 \, a}{a}} \sqrt {-\frac {b x^{2} - \sqrt {b^{2} - 4 \, a c} x^{2} - 2 \, a}{a}}}{4 \, c^{2} x} \]

[In]

integrate((1-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2),x, algorithm="fric
as")

[Out]

-1/4*(sqrt(1/2)*(b^2*x + sqrt(b^2 - 4*a*c)*b*x + (b*c*x + sqrt(b^2 - 4*a*c)*c*x)*sqrt((b^2 - 4*a*c)/c^2))*sqrt
((c*sqrt((b^2 - 4*a*c)/c^2) + b)/c)*sqrt(c/a)*elliptic_e(arcsin(sqrt(1/2)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) + b)
/c)/x), -1/2*(b*c*sqrt((b^2 - 4*a*c)/c^2) - b^2 + 2*a*c)/(a*c)) - sqrt(1/2)*(sqrt(b^2 - 4*a*c)*b*x + (b^2 - 2*
b*c)*x + (sqrt(b^2 - 4*a*c)*c*x + (b*c + 2*c^2)*x)*sqrt((b^2 - 4*a*c)/c^2))*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) +
b)/c)*sqrt(c/a)*elliptic_f(arcsin(sqrt(1/2)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) + b)/c)/x), -1/2*(b*c*sqrt((b^2 -
4*a*c)/c^2) - b^2 + 2*a*c)/(a*c)) + (b*c + sqrt(b^2 - 4*a*c)*c)*sqrt(-(b*x^2 + sqrt(b^2 - 4*a*c)*x^2 - 2*a)/a)
*sqrt(-(b*x^2 - sqrt(b^2 - 4*a*c)*x^2 - 2*a)/a))/(c^2*x)

Sympy [F]

\[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=\int \frac {\sqrt {- \frac {- b + 2 c x^{2} + \sqrt {- 4 a c + b^{2}}}{b - \sqrt {- 4 a c + b^{2}}}}}{\sqrt {- \frac {- b + 2 c x^{2} - \sqrt {- 4 a c + b^{2}}}{b + \sqrt {- 4 a c + b^{2}}}}}\, dx \]

[In]

integrate((1-2*c*x**2/(b-(-4*a*c+b**2)**(1/2)))**(1/2)/(1-2*c*x**2/(b+(-4*a*c+b**2)**(1/2)))**(1/2),x)

[Out]

Integral(sqrt(-(-b + 2*c*x**2 + sqrt(-4*a*c + b**2))/(b - sqrt(-4*a*c + b**2)))/sqrt(-(-b + 2*c*x**2 - sqrt(-4
*a*c + b**2))/(b + sqrt(-4*a*c + b**2))), x)

Maxima [F]

\[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=\int { \frac {\sqrt {-\frac {2 \, c x^{2}}{b - \sqrt {b^{2} - 4 \, a c}} + 1}}{\sqrt {-\frac {2 \, c x^{2}}{b + \sqrt {b^{2} - 4 \, a c}} + 1}} \,d x } \]

[In]

integrate((1-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2),x, algorithm="maxi
ma")

[Out]

integrate(sqrt(-2*c*x^2/(b - sqrt(b^2 - 4*a*c)) + 1)/sqrt(-2*c*x^2/(b + sqrt(b^2 - 4*a*c)) + 1), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((1-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2),x, algorithm="giac
")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(c
onst gen &

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx=\int \frac {\sqrt {1-\frac {2\,c\,x^2}{b-\sqrt {b^2-4\,a\,c}}}}{\sqrt {1-\frac {2\,c\,x^2}{b+\sqrt {b^2-4\,a\,c}}}} \,d x \]

[In]

int((1 - (2*c*x^2)/(b - (b^2 - 4*a*c)^(1/2)))^(1/2)/(1 - (2*c*x^2)/(b + (b^2 - 4*a*c)^(1/2)))^(1/2),x)

[Out]

int((1 - (2*c*x^2)/(b - (b^2 - 4*a*c)^(1/2)))^(1/2)/(1 - (2*c*x^2)/(b + (b^2 - 4*a*c)^(1/2)))^(1/2), x)